`

j2se------多线程--锁

    博客分类:
  • J2SE
阅读更多
====================================================
锁。。
CountDownLatch -----解锁需要手动提供钥匙
闭锁(Latch),它可以延迟线程的进度知道线程到达终止状态。一个闭锁工作方式就像一道门,直到闭锁到达终点状态之前,门一直关闭着。终点状态到了之后,所有阻塞的线程都可以通过。CountDownLatch 使用一个计数器作为终点状态,知道计数器的值到达0时,闭锁才会打开。调用await 方法,线程会阻塞知道计数器为0,countDown 方法使计数器减一。

闭锁有两种常见的用法,开始闭锁,结束闭锁。开始闭锁用于等待一个条件到达后所有线程一起执行,结束闭锁可以用来等待所有条件或所有线程结束后再进行后续处理。例子:
final CountDownLatch startLatch = new CountDownLatch(1);  //想象成这把锁需要开一次就能打开
final CountDownLatch endLatch = new CountDownLatch(3); //想象成这把锁需要开三次才能打开
Runnable prepare = new Runnable() {
	@Override
	public void run() {
		try {
			startLatch.await();//等待开始闭锁,线程同时开始执行,等待别人手动打开锁
			System.out.println("收拾东西,准备出门");
			Random rnd = new Random();
			Thread.sleep(rnd.nextInt(1000));
		} catch (InterruptedException ignored) {
		}
		endLatch.countDown();
	}
};

Thread mum = new Thread(prepare);
Thread dad = new Thread(prepare);
Thread me = new Thread(prepare);
mum.start();
dad.start();
me.start();
startLatch.countDown();  //当他们准备好了,主线程开锁
try {
	endLatch.await();  //主线程也被上了锁,不过这次可以解开锁的人是三个人
} catch (InterruptedException ignored) {
}
System.out.println("逛街");
~~~~~~~~~~~~~~~~~~忧郁的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~
CyclicBarrier //不需要显示的开锁

关卡(Barrier)类似于闭锁,他们都能阻塞一组线程,知道某些事件发生,不同之处在于所有CyclicBarrier等待的是现线程,只有一定数目的线程到达这个点时,才允许同时通过。它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环 的 barrier。CyclicBarrier 支持一个可选的 Runnable 命令,在一组线程中的最后一个线程到达之后(但在释放所有线程之前),该命令只在每个屏障点运行一次。若在继续所有参与线程之前更新共享状态,此屏障操作很有用。
该例子中CyclicBarrier等待两个线程到达后输出conditon is arrive and CycleBarrier is running,两个线程都从await中返回。
public class Main { 

    public static CyclicBarrier getCyclicBarrier(int count) { 
        if (count <= 0) 
            return null; 
        final CyclicBarrier cyclicBarrier = new CyclicBarrier(count, 
                new Runnable() { 
                    public void run() { 
                        try { 
                            Thread.sleep(1000); 
                        } catch (InterruptedException e) { 
                            e.printStackTrace(); 
                        } 
                        System.out.println("conditon is arrive and CycleBarrier is running"); 
                    } 
                }); 
        return cyclicBarrier; 
    } 

    public static Thread getThread(String nameOfThread, 
            final CyclicBarrier cyclicBarrier) { 
        Thread thread = new Thread(nameOfThread) { 
            public void run() { 
                System.out.println(this.getName() + 
"is begin; and count is "+ (++count)); 
                try { 
                    cyclicBarrier.await(); 
                } catch (InterruptedException e) { 
                    e.printStackTrace(); 
                } catch (BrokenBarrierException e) { 
                    e.printStackTrace(); 
                } 
                System.out.println(this.getName() + "finished"); 
            } 
        }; 
        return thread; 

    } 

    static int count = 0; 

    public static void main(String[] args) { 
        /** define a cyclicBarrier and number of barrier is 2. */ 
        CyclicBarrier cyclicBarrier = getCyclicBarrier(2); 
        Thread threadOne = getThread("threadOne", cyclicBarrier); 
        threadOne.start(); 
        Thread threadTwo = getThread("threadTwo", cyclicBarrier); 
        threadTwo.start(); 
    } 
}
下面进一步理解循环概念:
比如有几个旅行团需要途经深圳、广州、韶关、长沙最后到达武汉。旅行团中有自驾游的,有徒步的,有乘坐旅游大巴的;这些旅行团同时出发,并且每到一个目的地,都要等待其他旅行团到达此地后再同时出发,直到都到达终点站武汉。

这时候CyclicBarrier就可以派上用场。CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些线程都可以继续执行,否则就会等待。

package examples.ch06.example01;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class TestCyclicBarrier {
	// 徒步需要的时间: Shenzhen, Guangzhou, Shaoguan, Changsha, Wuhan
	private static int[] timeWalk = { 5, 8, 15, 15, 10 };
	// 自驾游
	private static int[] timeSelf = { 1, 3, 4, 4, 5 };
	// 旅游大巴
	private static int[] timeBus = { 2, 4, 6, 6, 7 };

	static String now() {
		SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
		return sdf.format(new Date()) + ": ";
	}

	static class Tour implements Runnable {
		private int[] times;
		private CyclicBarrier barrier;
		private String tourName;

		public Tour(CyclicBarrier barrier, String tourName, int[] times) {
			this.times = times;
			this.tourName = tourName;
			this.barrier = barrier;
		}

		public void run() {
			try {
				Thread.sleep(times[0] * 1000);
				System.out.println(now() + tourName + " Reached Shenzhen");
				barrier.await();
				Thread.sleep(times[1] * 1000);
				System.out.println(now() + tourName + " Reached Guangzhou");
				barrier.await(); //第二次阻塞了哈
				Thread.sleep(times[2] * 1000);
				System.out.println(now() + tourName + " Reached Shaoguan");
				barrier.await();
				Thread.sleep(times[3] * 1000);
				System.out.println(now() + tourName + " Reached Changsha");
				barrier.await();
				Thread.sleep(times[4] * 1000);
				System.out.println(now() + tourName + " Reached Wuhan");
				barrier.await();
			} catch (InterruptedException e) {
			} catch (BrokenBarrierException e) {
			}
		}
	}

	public static void main(String[] args) {
		// 三个旅行团
		CyclicBarrier barrier = new CyclicBarrier(3);
		ExecutorService exec = Executors.newFixedThreadPool(3);
		exec.submit(new Tour(barrier, "WalkTour", timeWalk));
		exec.submit(new Tour(barrier, "SelfTour", timeSelf));
		exec.submit(new Tour(barrier, "BusTour", timeBus));
		exec.shutdown();
	}
}

~~~~~~~~~~~~~~~~~~~~~~wait和notify级别的锁~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
显式锁
在java 5之前,用于调节共享对象访问的机制只有synchronized和volatile。java 5提供了新的选择:ReentrantLock。ReentrantLock能够提供更多的高级特性,比如轮询和可定时的加锁,可中断的加锁。以及一个支持读锁和写锁的ReentrantReadWriteLock。使用ReentrantLock必须手动使用lock或其他操作加锁,在finally块中unlock。

Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
class BoundedBuffer {
   final Lock lock = new ReentrantLock();
   final Condition notFull  = lock.newCondition(); 
   final Condition notEmpty = lock.newCondition(); 

   final Object[] items = new Object[100];
   int putptr, takeptr, count;

   public void put(Object x) throws InterruptedException {
     lock.lock();
     try {
       while (count == items.length) 
         notFull.await();
       items[putptr] = x; 
       if (++putptr == items.length) putptr = 0;
       ++count;
       notEmpty.signal();
     } finally {
       lock.unlock();
     }
   }

   public Object take() throws InterruptedException {
     lock.lock();
     try {
       while (count == 0) 
         notEmpty.await();
       Object x = items[takeptr]; 
       if (++takeptr == items.length) takeptr = 0;
       --count;
       notFull.signal();
       return x;
     } finally {
       lock.unlock();
     }
   } 
 }



ReentrantLock:一个可重入的互斥锁Lock,它具有与使用synchronized方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大。 使用ReentrantLock构建的同步Map:
public class LockedMap<K, V> {
	private Map<K, V> map;
	private Lock lock = new ReentrantLock();
	
	public LockedMap(Map<K, V> map) {
		this.map = map;
	}

	public V get(K key) {
		lock.lock();
		try {
			return map.get(key);
		} finally {
			lock.unlock();
		}
	}

	public void put(K key, V value) {
		lock.lock();
		try {
			map.put(key, value);
		} finally {
			lock.unlock();
		}
	}
}
public class ReentrantLockTest {

    private List<Integer> numbers = new ArrayList<Integer>();
    private Lock numbersLock = new ReentrantLock();

    public void addNumbers(int num) {
        try {
            numbersLock.lock();
            numbers.add(num);
        } finally {
            numbersLock.unlock();
        }
    }

    public void outputNumbers() {
        try {
            if (numbersLock.tryLock(1, TimeUnit.SECONDS)) {
                for (int num : numbers) {
                    System.out.println(num);
                }
            }
        } catch (InterruptedException ex) {
            ex.printStackTrace();
        } finally {
            numbersLock.unlock();
        }
    }    

    public static void main(String[] args) {
        final ReentrantLockTest test = new ReentrantLockTest();
        Executor pool = Executors.newFixedThreadPool(3);
        pool.execute(new Runnable() {

            public void run() {
                Random rnd = new Random();
                while (true) {
                    int number = rnd.nextInt();
                    test.addNumbers(number);
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException ignored) {
                    }
                }
            }
        });

        pool.execute(new Runnable() {

            public void run() {
                while (true) {
                    test.outputNumbers();
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException ignored) {
                    }
                }
            }
        });
    }
}
ReentrantReadWriteLock提供了对读锁和写锁的支持,同一时刻,可允许多个读锁,但只允许有一个写锁,读锁的获取和写锁的获取是互斥的。从ReentrantReadWriteLock对象的readLock方法可以获得相应的读锁,writeLock方法可以获得相应的写锁。使用 ReentrantReadWriteLock构建的Map,允许多个get操作并发执行: 
public class ReadWriteMap<K,V>  {
	private Map<K,V> map;
	private ReadWriteLock lock = new ReentrantReadWriteLock();
	private Lock readLock = lock.readLock();
	private Lock writeLock  = lock.writeLock();	
	
	public ReadWriteMap(Map<K,V> map){
		this.map = map;
	}
	
	public V get(K key){
		readLock.lock();
		try{
			return map.get(key);
		}
		finally{
			readLock.unlock();
		}	
	}
	
	public void put(K key,V value){
		writeLock.lock();
		try{
			map.put(key, value);
		}
		finally{
			writeLock.unlock();
		}
	}
	
}


分享到:
评论

相关推荐

    Java 并发核心编程

    这篇指南主要是为帮助java多线程开发人员理解并发的核心概念以及如何应用这些理念。本文的主题是关于具有java语言风格的Thread、synchronized、volatile,以及J2SE5中新增的概念,如锁(Lock)、原子性(Atomics)、并发...

    JAVA2核心技术(中文的PDF).part3.rar

    本书是Java 2技术权威指南,全面覆盖Java 2技术的高级主题,包括:多线程、集合框架、网络API、数据库编程、分布式对象等,深入探究了Swing、Java 2D API、JavaBean、Java安全模式、XML、注释、元数据等主题,同时...

    Java SE实践教程 源代码 下载

    1.2.3 J2SE 5.0新特性实践 26 1.3 小结 35 第2章 对象无处不在——面向对象的基本概念 37 2.1 讲解 38 2.1.1 什么是面向对象 38 2.1.2 面向对象的基本概念 38 2.1.3 Java对面向对象的支持 41 2.2 练习 42 ...

    java面试题

    答:Servlet与CGI的区别在于Servlet处于服务器进程中,它通过多线程方式允许其service方法,一个实例可以服务于多个请求,并且其实例一般不会被销毁,而CGI对每个请求都产生新的进程,服务完后就销毁,所以效率上...

    Java SE实践教程 pdf格式电子书 下载(一) 更新

    第3章 当一个变成多个——集合框架的基本概念 53 .3.1 讲解 54 3.1.1 集合概述 54 3.1.2 Collection接口 54 3.1.3 泛型(Generics) 56 3.1.4 Map接口 57 3.2 练习 59 3.2.1 创建课程管理系统 59 3.3 小结 ...

    Java SE实践教程 pdf格式电子书 下载(四) 更新

    第3章 当一个变成多个——集合框架的基本概念 53 .3.1 讲解 54 3.1.1 集合概述 54 3.1.2 Collection接口 54 3.1.3 泛型(Generics) 56 3.1.4 Map接口 57 3.2 练习 59 3.2.1 创建课程管理系统 59 3.3 小结 ...

    Java JDK实例宝典

    7 一个支持多线程的服务器框架 13. 8 代理服务器 13. 9 Telnet客户端 13. 10 UDP编程 13. 11 聊天室服务器端 13. 12 聊天室客户端 13. 13 FTP客户端 第14章 数据库 14. 1 连接各种...

    java jdk实列宝典 光盘源代码

    一个支持多线程的服务器框架,GeneralServer.java; 代理服务器,ProxyServer.java; telnet客户端,访问系统的telnet服务实质上是与telnet服务建立socket连接,默认的telnet服务的端口是23,TelnetClient.java; ...

    Java 1.6 API 中文 New

    java.util.concurrent.atomic 类的小工具包,支持在单个变量上解除锁的线程安全编程。 java.util.concurrent.locks 为锁和等待条件提供一个框架的接口和类,它不同于内置同步和监视器。 java.util.jar 提供读写 JAR ...

Global site tag (gtag.js) - Google Analytics